Virtstrap Documentation
Release 0.3.1

Reuven V. Gonzales

March 14, 2012

CONTENTS

Virtstrap Documentation, Release 0.3.1

virtstrap makes your life easier, by providing a simple and repeatable bootstrapping process. It was inspired by
pip+virtualenv and buildout, but seeks to create a unified and standard way that won’t scare away any new python
developers and will make old pythonista’s lives a bit easier. All with the wonderful convenience of the MIT License.

With virtstrap, setting up your development environment is as simple as this:

$ vstrap init

This will make a new virtualenv in a directory . vs.env and a file called quickactivate in your current working
directory. To use this virtualenv just type:

$ source quickactivate

Python development should be this simple. That’s the goal of this project. To make setting up a project for python as
simple as developing the project itself.

CONTENTS 1

Virtstrap Documentation, Release 0.3.1

2 CONTENTS

CHAPTER
ONE

CURRENT FEATURES

 Provides a standard location for virtualenv
* Provide a quick and simple way to activate the current environment

* Generate a requirements file much like a Gemfile.lock

Virtstrap Documentation, Release 0.3.1

4 Chapter 1. Current Features

CHAPTER
TWO

FUTURE FEATURES

 Provide a simple plugin system

* Allow for arbitrary environment variables to be set

Virtstrap Documentation, Release 0.3.1

6 Chapter 2. Future Features

CHAPTER
THREE

USER GUIDE

3.1 Virtstrap Installation Guide

3.1.1 Recommended method

Pip is the recommended method for installing virtstrap. Simply do:

$ pip install virtstrap

If you only have easy_install, you should install pip before continuing and execute the command above.

Once it has completed all the correct dependencies should be installed.

3.1.2 Installation from source

Due to the complexity of installing from source. It is highly discouraged at this time. However, this should hopefully
work for most people

First grab the code:

$ git clone git://github.com/ravenac95/virtstrap-suite.git

Install the code:

$ make install

If you’d like to be able edit the code use this command instead:

$ make install-develop

But if you’re ready to do that you may want to look at Contributing to virtstrap to get started.

3.2 Virtstrap Quickstart Guide

First, make sure you have virtstrap installed. If you do not, head on over to the Virztstrap Installation Guide.

3.2.1 Simplest virtstrap example

After virtstrap has been installed a command, vstrap, will be available on your command line. You can create an
virtstrap enabled project just by doing the following:

Virtstrap Documentation, Release 0.3.1

$ mkdir myproject
$ cd myproject
$ vstrap init

This creates a virtualenv in the directory myproject/.vs.env and a bash script at
myproject/quickactivate.
Finally, do:

$ source quickactivate

You now have a virtualenv for myproject.

3.2.2 Virtstrap with basic configuration

In the previous section we created the most simple type of virtstrap environment possible. However, without any
configuration files virtstrap is a bit anemic. So let’s start a simple configuration file to go along with the previous
example.

In your favorite editor start a file called VEf 1 le in your myproject directory (mine is vim):

S vim VEfile

Let’s say you’d like to grab two packages: Armin Ronacher’s wonderful Flask micro web framework, and Kenneth
Reitz’s amazing requests HTTP library. Put the following inside VEfile:

requirements:
- flask
- requests: ’>=0.10"

Save your file and run this command in your shell:

$ vstrap install

This command runs the installation portion of the init command. Doing vstrap init would have had the same
effect. The install command skips some of the steps involved in init

After the command completes it’s work, you will now have the latest version of flask and any requests package greater
than version 0.10 inside your virtual environment. In order for this to happen, virtstrap converted the requirements
defined in VEfile to a pip requirements. Pip then takes over and installs all of the requirements.

In the future, the VEfile will also generate a file called VEfile.lock which will contain the exact versions of the packages
you just installed. This file like, Ruby Bundler’s Gemfile.lock, should be added into your repository to create a truly
repeatable project environment.

3.2.3 Repeatable environments. Because it matters

A repeatable environment is the main goal of virtstrap. As such let’s take a look at exactly how that all works.
First let’s get rid of the virtstrap environment. VEfile and VEfile.lock are not deleted:

$ vstrap clean

This brings an almost bare directory, save the configurations defined in VEfile.lock and VEfile. Finally do:

$ vstrap init

8 Chapter 3. User Guide

http://flask.pocoo.org/
http://python-requests.org/

Virtstrap Documentation, Release 0.3.1

Your project is now brought us back to the state before we ran vstrap clean. The implication of this is that say
you and Bob are working on this project together. Instead of emailing you and asking you about all the dependencies
or manually creating a virtualenv and running a pip requirements all bob has to do is type the following inside his
cloned project directory:

$ vstrap init

Now you’re both ready to go. Beautiful isn’t it :-)?

3.3 The VEfile

The VEfile is a central point of virtstrap. It allows you to define project metadata, requirements, and eventually options
for plugins. The VEfile is a YAML file that uses some unique conventions to define the configuration.

3.3.1 It’s just YAML

To understand the VEfile here’s a short introduction to it’s structure. The following is a valid VEfile:

foo: bar
unladen: swallow
python_is: awesome

In it’s most basic form the VEfile is a simple dictionary or key/value storage. The top most level of keys are considered
“sections” and their values can be anything. In the example above the sections are foo, unladen, and python_is.
In python this VEfile simply becomes:

{"foo’: "bar’, ’'unladen’: ’'swallow’, ’'python_is’: "awesome’ }

Just remember, you can define any key/value pair you wish in the VEfile and virtstrap will happily ignore any section
(key) it doesn’t recognize.

3.3.2 Virtstrap Sections

For the sections virtstrap does recognize, it expects particular types of values (although it’s still pretty lenient). By
design, none of the sections in virtstrap are required. This allows you to use virtstrap without any real specifications.
However, once you’re done being lazy and not setting up your project’s repeatable environment, here are the sections
you can set.

* project_name: Defines the project name. By default the project name is inferred from a projects root directory
name. Set this if you’d like it to ensure consistency no matter where it is located.

* requirements: Defines the requirements for the project. This is the most useful section and one that you will
probably use most. Requirements are explained in the next section, The “requirements” Section

3.3.3 The “requirements” Section
The requirements section of the VEfile allow you to define your project’s dependencies. Currently there are three
forms of dependency declaration.

1. Package name - This is the simplest declaration. All you do is use the package name so your VEfile would look
like this:

3.3. The VEfile 9

Virtstrap Documentation, Release 0.3.1

requirements:
- some_package # Syntax
- flask # Example

Package name with version specification - This declaration allows you to specify a version or a range of versions.
The syntax is similar to defining a just a package name, but it separates the specification string from the package
name by a colon. See here:

requirements:
- some_package: "some_spec" # Syntax
- flask: ">=0.7" # Example
- requests: "<=1.0" # Another example

some__spec can be any specification that is allowed by python’s distutils.

. Package name with urls - This declaration is the most complex and is meant to be used when you’d like to grab

a package from a repository. The syntax may seem verbose for those used to pip’s requirement syntax, but it is
meant to be read more easily and hopefully more usable as well. See here:

requirements:
- some_package2: # Syntax for normal urls
- url_to_package_tar_or_zip

— some_packagel: # Syntax for VCS
- vcs_typeturl_to_repo # vcs_type must be git|bzr|hg/svn
- editable: true # This is optional and makes
a package editable
- requests: # Examplel (normal url)

- https://github.com/kennethreitz/requests/tarball/v0.10.6

- flask: # Example2 (VCS url)
- git+https://github.com/mitsuhiko/flask
- editable: true

Those familiar with pip will see that the syntax isn’t too far off. The basic syntax for urls is one of two different
types: the VCS url or a normal url. A VCS url must be preceded by a type, which is any of the following: git,
hg, bzr, or svn. The normal url must point to a tar, zip, or a local directory.

Here’s a full example of a requirements section that installs flask, requests, virtstrap-core, and
virtstrap-local.

requirements:

flask

requests: ">=0.7"

virtstrap-core:

- git+https://github.com/ravenac95/virtstrap-core.git

- editable: true

virtstrap-local:

- https://github.com/ravenac95/virtstrap-local/tarball/v0.3.0

3.3.4 Profiles

One additional, and powerful, part of VEfile’s structure is it’s ability to use profiles. In virtstrap, a profile is a par-
ticular type of environment you’d like to setup. These types of environments could be something like development,
testing, staging, production, etc. Virtstrap makes little assumptions about the names you with to use for profiles. The
development profile is the single exception. Virtstrap will always use the development profile if you do not specify a

10

Chapter 3. User Guide

Virtstrap Documentation, Release 0.3.1

different profile. The reason for this is that most of your time with virtstrap will be spent developing code, so it should
be simple.

In order to define profiles, VEfile utilizes YAML’s concept of documents. Each document in a YAML file is separated
by a ———. The first document in the VEfile is always the default profile. This profile is always used regardless of the
currently chosen profile. Every document after that must define a section profile whose value will be used as the
profile name. Here’s an example of a VEfile that uses profiles:

###AF A AR R A AFAAA A RF AR AA A AR A A AHA A AAAA
This section is the default profile

it is ALWAYS used. So don’t put anything here
that isn’t absolutely necessary on every

environment
#HAARAAAAAAFAAAAAAHA R A AR AA AR EA AR

project: tobetterus

requirements:
- sqglalchemy
- flask: ">=0.7"

some_value: foo

—-—— # This starts a new document (therefore a new profile)
FAHAAHHAAHFAEHAARHA AR AR AR AR A A AHAS

This profile is the development profile

as defined by the section directly

below this comment

[FZZZE SIS I SIS EEEEEE LS LT EEEE L

profile: development

Lists and dictionaries always append the other profile’s data
when profiles are combined
requirements:

- ipython

If it isn’t a list or dictionary it’s value
is overridden entirely.

So the value of some_value if you use the

development profile will be ’bar’
some_value: bar

profile: production

requirements:
- python-memcached
- mysqgl-python

The VEfile above defines 3 profiles: default, development, and production.

To use profiles all you have to do is specify the ——profiles options on the command line interface. You do this
like so:

$ vstrap [command] —--profiles=production,development

The line about will use both the production and the development profile. So the list of requirements installed will be
sglalchemy, flask, ipython, python-memcached, and mysgl-python. In addition, if you request for
the value some_value you will get the value bar, but that’s only really useful if you’re developing a plugin for
virtstrap.

3.3. The VEfile 11

Virtstrap Documentation, Release 0.3.1

3.3.5 VEfile Suggestions

These are some suggestions when creating a VEfile.
» Use spaces instead of tabs (this is pretty much a suggestion for everything you write).
 Use 2 spaces for each tab level. This makes VEfiles a bit easier to read.

* Try not to specify exact versions for requirements in the VEfile. It is most powerful when you do not do that.
Virtstrap is able to lock all the requirement versions so you can repeat your environment on each machine.

* Don’t specify absolute file URL’s. This makes your project less repeatable.

12 Chapter 3. User Guide

CHAPTER
FOUR

DEVELOPER GUIDE

4.1 Contributing to virtstrap

In order to provide for the an easy setup for the user, virtstrap has been split into 3 different packages. That are all
combined into a single repository, virtstrap.

* virtstrap - This is the main package that users see. It provides the console script vstrap which is the main
interface to anything virtstrap related. It also contains the commands that can be used without the presence of a
project.

* virtstrap-core - This is the core of all of the virtstrap logic. The majority of virtstrap’s code is contained in this
core package. It is also a dependency for the other two packages.

* virtstrap-local - This package contains any commands that can only be used within a project and not throughout
the system.

4.1.1 Start developing!
To start contributing to virtstrap is pretty simple. First, fork the repository on github. Once you’ve done that do the
following:

$ make develop
$ source quickactivate.sh

Now you’ll be in a virtualenv made for virtstrap.

4.1.2 Virtstrap Makefile

The virtstrap repository contains a Makefile that has the following commands:
* develop - Setup the development environment using an old version of virtstrap
* testall - Runs all of the tests in all the packages

e supportfiles - Builds the support files and places them into the virtstrap_support folder inside the virtstrap
package.

e install - Installs virtstrap and virtstrap-core

* install-develop - Installs virtstrap and virtstrap-core as development versions (they’re editable)

13

https://github.com/ravenac95/virtstrap
https://github.com/ravenac95/virtstrap

