

 Navigation

 	
 index

 	
 next |

 	Virtstrap 0.3.12 documentation

Virtstrap: Simple, Repeatable Environments

virtstrap makes your life easier, by providing a simple and repeatable
bootstrapping process. It was inspired by pip+virtualenv and buildout, but
seeks to create a unified and standard way that won’t scare away any new
python developers and will make old pythonista’s lives a bit easier. All with
the wonderful convenience of the MIT License.

With virtstrap, setting up your development environment is as simple as this:

$ vstrap init

This will make a new virtualenv in a directory .vs.env and a file called
quickactivate in your current working directory. To use this virtualenv
just type:

$ source quickactivate

Python development should be this simple. That’s the goal of this project. To
make setting up a project for python as simple as developing the project
itself.

Current Features

	Provides a standard location for virtualenv

	Provide a quick and simple way to activate the current environment

	Generate a requirements file much like a Gemfile.lock

	Provide a simple plugin system

	Allows for arbitrary environment variables to be set

Future Features

	Utilize pippy [https://github.com/ravenac95/pippy] for faster installs

User Guide

	Virtstrap Installation Guide
	Recommended Method

	Installation From Source

	Virtstrap Quickstart Guide
	Simplest Virtstrap Example

	A Basic Configuration

	Repeatable Environments. Because It Matters

	The VEfile
	It’s Just YAML

	Virtstrap Sections

	The “requirements” Section

	The “environment” Section

	Profiles

	The Lock File

	VEfile Suggestions

Developer Guide

	Contributing to Virtstrap
	Start Developing!

	Virtstrap Makefile

	Plugin Development Quickstart
	A Quick Note About virtstrap’s Structure

	Creating A virtstrap-local Plugin

 Copyright 2012, Reuven V. Gonzales.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	v0.3.7

 	v0.3.6

 	v0.3.5

 	v0.3.4

 	v0.3.3

 	v0.3.2

 	v0.3.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Virtstrap 0.3.12 documentation

Virtstrap Installation Guide

Recommended Method

Pip is the recommended method for installing virtstrap. Simply do:

$ pip install virtstrap

If you only have easy_install, you should install pip before continuing and
execute the command above.

Once it has completed all the correct dependencies should be installed.

Installation From Source

Due to the complexity of installing from source. It is highly discouraged at
this time. However, this should hopefully work for most people

First grab the code:

$ git clone git://github.com/ravenac95/virtstrap-suite.git

Install the code:

$ make install

If you’d like to be able edit the code use this command instead:

$ make install-develop

But if you’re ready to do that you may want to look at Contributing to Virtstrap to
get started.

 Copyright 2012, Reuven V. Gonzales.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	v0.3.7

 	v0.3.6

 	v0.3.5

 	v0.3.4

 	v0.3.3

 	v0.3.2

 	v0.3.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Virtstrap 0.3.12 documentation

Virtstrap Quickstart Guide

First, make sure you have virtstrap installed. If you do not, head on over to
the Virtstrap Installation Guide.

Simplest Virtstrap Example

After virtstrap has been installed a command, vstrap, will be available on
your command line. You can create a virtstrap enabled project just by
doing the following:

$ mkdir myproject
$ cd myproject
$ vstrap init

This creates a virtualenv in the directory myproject/.vs.env and a
bash script at myproject/quickactivate.

Finally, do:

$ source quickactivate

You now have a virtualenv for myproject.

A Basic Configuration

In the previous section we created the most simple type of virtstrap
environment possible. However, without any configuration files virtstrap
is a bit anemic. So let’s start a simple configuration file to go along
with the previous example.

In your favorite editor start a file called VEfile in your myproject
directory (mine is vim):

$ vim VEfile

Let’s say you’d like to grab two packages: Armin Ronacher’s wonderful
Flask [http://flask.pocoo.org/] micro web framework, and Kenneth Reitz’s amazing requests [http://python-requests.org/]
HTTP library. Put the following inside VEfile:

requirements:
 - flask
 - requests: '>=0.10'

Save your file and run this command in your shell:

$ vstrap install

This command runs the installation portion of the init command. Doing
vstrap init would have had the same effect. The install command
skips some of the steps involved in init

After the command completes it’s work, you will now have the latest version
of flask and any requests package greater than version 0.10 inside your
virtual environment. In order for this to happen, virtstrap converted the
requirements defined in VEfile to a pip requirements. Pip then takes over
and installs all of the requirements.

The VEfile also generates a file called VEfile.lock which contains the exact
versions of the packages you just installed. This file like, Ruby Bundler’s
Gemfile.lock, should be added into your repository to create a truly repeatable
project environment.

Repeatable Environments. Because It Matters

A repeatable environment is the main goal of virtstrap. As such let’s take a
look at exactly how that all works.

First let’s get rid of the virtstrap environment. VEfile and VEfile.lock are
not deleted:

$ vstrap clean

This brings an almost bare directory, save the configurations defined in
VEfile.lock and VEfile. Finally do:

$ vstrap init

Your project is now brought us back to the state before we ran
vstrap clean. The implication of this is that say you and Bob are working
on this project together. Instead of emailing you and asking you about all the
dependencies or manually creating a virtualenv and running a pip requirements
all bob has to do is type the following inside his cloned project directory:

$ vstrap init

Now you’re both ready to go. Beautiful isn’t it :-)?

 Copyright 2012, Reuven V. Gonzales.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	v0.3.7

 	v0.3.6

 	v0.3.5

 	v0.3.4

 	v0.3.3

 	v0.3.2

 	v0.3.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Virtstrap 0.3.12 documentation

The VEfile

The VEfile is a central point of virtstrap. It allows you to define project
metadata, requirements, and eventually options for plugins. The VEfile is
a YAML file that uses some unique conventions to define the configuration.

It’s Just YAML

To understand the VEfile here’s a short introduction to it’s structure.
The following is a valid VEfile:

foo: bar
unladen: swallow
python_is: awesome

In it’s most basic form the VEfile is a simple dictionary or key/value
storage. The top most level of keys are considered “sections” and their
values can be anything. In the example above the sections are foo,
unladen, and python_is. In python this VEfile simply becomes:

{'foo': 'bar', 'unladen': 'swallow', 'python_is': 'awesome' }

Just remember, you can define any key/value pair you wish in the VEfile
and virtstrap will happily ignore any section (key) it doesn’t recognize.

Virtstrap Sections

For the sections virtstrap does recognize, it expects particular types of
values (although it’s still pretty lenient). By design, none of the
sections in virtstrap are required. This allows you to use virtstrap without
any real specifications. However, once you’re done being lazy and not setting
up your project’s repeatable environment, here are the sections you can set.

	project_name: Defines the project name. By default the project name is
inferred from a projects root directory name. Set this if you’d like it to
ensure consistency no matter where it is located.

	requirements: Defines the requirements for the project. This is the most
useful section and one that you will probably use most. Requirements are
explained in the next section, The “requirements” Section

	environment: Defines arbitrary environment variables for the project. These
environment variables are activated and deactivated with the virtual
environment. This section is explained a little later in
The “environment” Section.

	plugins: Defines the plugins just like you would define requirements. The
suggested way to define plugins is declaration Style 1 (explained in
The “requirements” Section)

Note

The freezing of these requirements will be handled differently in the
future. At this time there is no freezing of the plugin requirements,
this will be changed soon once a proper solution is determined.

The “requirements” Section

The requirements section of the VEfile allow you to define your project’s
dependencies. Currently there are three styles of dependency declaration.

	Package name - This is the simplest declaration. All you do is use the
package name so your VEfile would look like this:

requirements:
 - some_package # Syntax
 - flask # Example

	Package name with version specification - This declaration allows you to
specify a version or a range of versions. The syntax is similar to defining
a just a package name, but it separates the specification string from the
package name by a colon. See here:

requirements:
 - some_package: "some_spec" # Syntax
 - flask: ">=0.7" # Example
 - requests: "<=1.0" # Another example

some_spec can be any specification that is allowed by python’s
distutils.

	Package name with urls - This declaration is the most complex and is
meant to be used when you’d like to grab a package from a repository. The
syntax may seem verbose for those used to pip’s requirement syntax, but it
is meant to be read more easily and hopefully more usable as well. See
here:

requirements:
 - some_package2: # Syntax for normal urls
 - url_to_package_tar_or_zip

 - some_package1: # Syntax for VCS
 - vcs_type+url_to_repo # vcs_type must be git|bzr|hg|svn
 - editable: true # This is optional and makes
 # a package editable

 - requests: # Example1 (normal url)
 - https://github.com/kennethreitz/requests/tarball/v0.10.6

 - flask: # Example2 (VCS url)
 - git+https://github.com/mitsuhiko/flask
 - editable: true

Those familiar with pip will see that the syntax isn’t too far off. The
basic syntax for urls is one of two different types: the VCS url or a
normal url. A VCS url must be preceded by a type, which is any of the
following: git, hg, bzr, or svn. The normal url must point to a tar, zip,
or a local directory.

Here’s a full example of a requirements section that installs flask,
requests, virtstrap-core, and virtstrap-local.

requirements:
 - flask
 - requests: ">=0.7"
 - virtstrap-core:
 - git+https://github.com/ravenac95/virtstrap-core.git
 - editable: true
 - virtstrap-local:
 - https://github.com/ravenac95/virtstrap-local/tarball/v0.3.0

The “environment” Section

The environment section is extremely simple. It is simply a yaml dictionary.
Here’s a short example:

environment:
 MY_ENV_VAR1: "SOME VALUE"
 MY_ENV_VAR2: "SOME OTHER VALUE"

Note, care is taken to ensure that environment variables are not destructive to
the original environment, so don’t be too afraid about changing any of the
environment variables.

For convenience the environment section allows you to replace the following
values:

	$PROJECT_DIR - Replaced by the project’s root directory

	$VE_DIR - Replaced by the .vs.env directory of the project

	$BIN_DIR - Replaced by the environments bin directory

Here’s a short example of all their uses:

environment:
 MY_PROJ_DIR_STORAGE: "$PROJECT_DIR/storage"
 MY_VE_DIR_STORAGE: "$VE_DIR/storage"
 MY_BIN_DIR_STORAGE: "$BIN_DIR/storage"

Depending on your project, arbitrary environment variables can be a really
powerful tool. Please note, however, these environment variables can only be
accessed when using a virtual environment. Outside of that context it’s not
going to work (yet?)

Profiles

One additional, and powerful, part of VEfile’s structure is it’s ability to use
profiles. In virtstrap, a profile is a particular type of environment you’d
like to setup. These types of environments could be something like
development, testing, staging, production, etc. Virtstrap makes little
assumptions about the names you with to use for profiles. The development
profile is the single exception. When initializing a virtstrap project, the
development profile will be used by default do not specify a different
profile. The reason for this is that most of your time with virtstrap will be
spent developing code, so it should be simple. For convenience, virtstrap will
remember the profile you used during initialization and will continue to use it
unless you specify otherwise. This feature will be explained below.

In order to define profiles, VEfile utilizes YAML’s concept of documents. Each
document in a YAML file is separated by a ---. The first document in the
VEfile is always the default profile. This profile is always used regardless of
the currently chosen profile. Every document after that must define a section
profile whose value will be used as the profile name. Here’s an
example of a VEfile that uses profiles:

##
This section is the default profile
it is ALWAYS used. So don't put anything here
that isn't absolutely necessary on every
environment
##
project: tobetterus

requirements:
 - sqlalchemy
 - flask: ">=0.7"

environment:
 value1: hello
 value2: world

some_value: foo

--- # This starts a new document (therefore a new profile)
###
This profile is the development profile
as defined by the section directly
below this comment
###
profile: development

Lists and dictionaries always append the other profile's data
when profiles are combined
requirements:
 - ipython

If it isn't a list or dictionary it's value
is overridden entirely.
So the value of some_value if you use the
development profile will be 'bar'
some_value: bar

profile: production

environment:
 value2: "python world"

requirements:
 - python-memcached
 - mysql-python

Using profiles with the vstrap command

The VEfile above defines 3 profiles: default, development, and
production.

To use profiles all you have to do is specify the --profiles options on the
command line interface. You do this like so:

$ vstrap [command] --profiles=production,development

The line above will use both the production and the development profile. So the
list of requirements installed will be sqlalchemy, flask, ipython,
python-memcached, and mysql-python. In addition, if you request for the
value some_value you will get the value bar, but that’s only really
useful if you’re developing a plugin for virtstrap.

Using profiles when activating the environment

If you’d like to specify a different profile or profiles when activating the
environment just do this in your project directory:

$. ./quickactivate production

Using this line above to activate will ensure that the production and the
default environment variables are set correctly.

The Lock File

Virtstrap uses the VEfile to create a lock file, VEfile.lock based on the
requirements in the VEfile. It’ll store the exact versions you used in
development so you can share your project with others and have it work
identically everywhere. Eventually it’ll do a better job of locking more than
just the requirements, but for now that is the most basic need for a repeatable
environment. The lock file should not be edited unless you really know what
you’re doing.

VEfile Suggestions

These are some suggestions when creating a VEfile.

	Use spaces instead of tabs (this is pretty much a suggestion for everything
you write).

	Use 2 spaces for each tab level. This makes VEfiles a bit easier to read.

	Try not to specify exact versions for requirements in the VEfile. It is most
powerful when you do not do that. Virtstrap is able to lock all the
requirement versions so you can repeat your environment on each machine.

	Don’t specify absolute file URL’s. This makes your project less repeatable.

 Copyright 2012, Reuven V. Gonzales.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	v0.3.7

 	v0.3.6

 	v0.3.5

 	v0.3.4

 	v0.3.3

 	v0.3.2

 	v0.3.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Virtstrap 0.3.12 documentation

Contributing to Virtstrap

In order to provide for the an easy setup for the user, virtstrap has been
split into 3 different packages. That are all combined into a single
repository, virtstrap [https://github.com/ravenac95/virtstrap].

	virtstrap - This is the main package that users see. It provides the
console script vstrap which is the main interface to anything virtstrap
related. It also contains the commands that can be used without the presence
of a project.

	virtstrap-core - This is the core of all of the virtstrap logic. The
majority of virtstrap’s code is contained in this core package. It is also a
dependency for the other two packages.

	virtstrap-local - This package contains any commands that can only be used
within a project and not throughout the system.

Start Developing!

To start contributing to virtstrap is pretty simple. First, fork the
repository on github [https://github.com/ravenac95/virtstrap]. Once you’ve
done that do the following:

$ make develop
$ source quickactivate.sh

Now you’ll be in a virtualenv made for virtstrap.

Virtstrap Makefile

The virtstrap repository contains a Makefile that has the following commands:

	develop - Setup the development environment using an old version of
virtstrap

	testall - Runs all of the tests in all the packages

	supportfiles - Builds the support files and places them into the
virtstrap_support folder inside the virtstrap package.

	install - Installs virtstrap and virtstrap-core

	install-develop - Installs virtstrap and virtstrap-core as
development versions (they’re editable)

	distribute - Push the current packages to the PyPI.

 Copyright 2012, Reuven V. Gonzales.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	v0.3.7

 	v0.3.6

 	v0.3.5

 	v0.3.4

 	v0.3.3

 	v0.3.2

 	v0.3.1

 Navigation

 	
 index

 	
 previous |

 	Virtstrap 0.3.12 documentation

Plugin Development Quickstart

Note

This part of the documentation is extremely sparse and will be updated very
soon.

One of the main goals of virtstrap is to provide a simple way to create plugins
that can extend the functions of virtstrap for each project. Plugins can add
functionality using two different objects:

	Command - A Command is any new command that you’d like to add to the
command line interface

	Hook - A Hook is essentially an event listener. The hooks listen for
events that occur during a command. The default events for almost every
command are before and after. As a convention, commands should
declare the events they call.

This quickstart guide goes through the creation of a hook. Eventually this will
contain information on creating new commands.

A Quick Note About virtstrap’s Structure

In order to understand plugins, you have to understand a bit about how
virtstrap works. Virtstrap has multiple packages explained below:

	virtstrap-core - The majority of virtstrap’s logic is here. The other
packages are dependent on this package. You cannot write plugins for this
package. If you wish to extend it then refer to Contributing to Virtstrap.

	virtstrap - This is the system wide package that contains the script
for the vstrap command. It also contains the logic for the init
and commands commands. Plugins written for virtstrap apply to the
entire system. So the plugins for virtstrap should most likely be
commands as hooks may cause unwanted functionality on different projects.

	virtstrap-local - Contains all the logic pertaining to anything project
specific. Plugins written for virtstrap-local allow you to vary
functionality depending on project. In general, the suggestion is to write
plugins for virtstrap-local.

So let’s start by creating a new virtstrap-local plugin.

Creating A virtstrap-local Plugin

Like mentioned previously, virtstrap-local is the suggested package to
extend with plugins. The reason is that your changes won’t interfere with other
projects on your system and it allows your plugins to be used in a repeatable
fashion.

Step 1: Start a new python package

Virtstrap plugins, like buildout recipe’s, are simply python packages. The
package simple registers a module to an entry point and virtstrap takes over
from there. So let’s start out by creating a new package for to create our
new plugin:

$ mkdir virtstrap-new-plugin
$ cd virtstrap-new-plugin
$ mkdir virtstrap_new_plugin
$ touch virtstrap_new_plugin/__init__.py

Note

For the time being, virtstrap assumes you’re using a unix environment. At
this time windows is untested although plans are in the works for a future
release.

What we just did is create the scaffolding for a new python package. Next,
we need to create a setup.py file. Open up your favorite editor (mine is
vim) and copy this code (you can edit this if you are actually going to use
this):

from setuptools import setup, find_packages
import sys, os

version = '0.0.0-dev'

setup(
 name='virtstrap-new-plugin',
 version=version,
 description="A new virtstrap plugin",
 long_description="""A new virtstrap plugin""",
 classifiers=[],
 keywords='virtstrap',
 author='John Doe',
 author_email='someone@someemail-place.com',
 url='',
 license='MIT',
 packages=find_packages(exclude=['ez_setup', 'examples', 'tests']),
 include_package_data=True,
 zip_safe=False,
 install_requires=[
 #'virtstrap-local',
],
 entry_points={
 'virtstrap_local.plugins': [
 'plugin = virtstrap_new_plugin.plugin',
]
 },
)

Step 2: Write the plugin!

In general the best way to get something new out of virtstrap is to use hooks
to listen for events that commands issue. Commands will almost always issue
the before and after event. The easiest way to determine what events
are available is to use the event attribute of a command.

Here is a simple example:

from virtstrap import hooks

@hooks.create('install', ['after'])
def new_install_hook(event, options, **kwargs):
 print "I appear after install has completed!"

So what did this all do? Let’s break it down!

	First we need to import virtstrap.hooks which provides the
virtstrap.hooks.create decorator.

	Next we use the virtstrap.hooks.create decorator to define what command
event we’d like to listen to. It requires two arguments.
	The name of the command that you’d like to listen to - in our case the
install command

	A list of events you’d like to listen for - in this case the after
event.

	Now we create the actual hook logic in the decorated function
new_install_hook. The decorator expects the decorated function to accept
two arguments and an arbitrary set of keyword arguments:
	event - This is the current event that is being processed

	options - This is an object representing the command line argument
options. It should be used as read-only.

	Finally we just print a message to the user (using an unrecommended method
of output... more on this later)

The above example is the bare minimum you’d need to write to create a hook.
Really, it’s pretty lame. It simply prints the statement I appear after
install has completed upon receiving the after event from the install
command. However, let’s do something a tad more interesting:

from virtstrap import hooks
from virtstrap.log import logger

@hooks.create('install', ['after'])
def new_install_hook(event, options, project=None, **kwargs):
 logger.info('The current path of the project is %s' % project.path())

There are three changes here.

	We added an import on the second line to virtstrap.log.logger. This is
the recommended way to output to the user. It allows virtstrap to log any
messages, but also display pertinent messages to the user depending on the
verbosity settings.

	The new_install_hook function now has a different argument list. We’ve
added project=None to the list of arguments. The project argument is
passed in by install command’s after event. The project object is an
abstraction to the current project’s directory and configuration
information.

	Finally on the last line we use the logger‘s info method to display
the current path of the project to the user.

There, that’s a bit more interesting. However, it still does almost nothing.
Let’s do something crazy - like initialize a git repository!

Here goes:

from virtstrap import hooks
from virtstrap.log import logger
from virtstrap.utils import call_subprocess

@hooks.create('install', ['after'])
def new_install_hook(event, options, project=None, **kwargs):
 logger.info('Initializing a git repository for project at %s'
 % project.path())
 call_subprocess(['git', 'init', project.path()], show_stdout=False)

WOO! Finally, we’re getting somewhere. This is what just happened:

	We import virtstrap.utils.call_subprocess. This allows us to call a
subprocess. It just makes dealing with subprocesses a tad bit easier. For
now, you’ll just have to trust it.

	The next major change we introduce is running call_subprocess on the
last line of code. What this line does is creates a git repository in your
project root. Granted, this isn’t really that useful after the install
command has been run but it is definitely more interesting than printing out
useless strings.

Step 3: Using the plugin

In order for you to use this plugin let’s test it out with a new
project.

Do the following in any directory you wish to use:

$ mkdir test-project
$ cd test-project

Next create a VEfile:

$ vim VEfile

Place this inside of it

plugins:
 - virtstrap-new-plugin:
 - file://PATH_TO_PLUGIN

Just replace PATH_TO_PLUGIN with the actual path to the plugin’s directory.

Step 4: Init the project. Watch the magic happen

Finally, from within your new project directory do this:

$ vstrap init

You should see the following:

... (normal virtstrap messages)
Initializing a git repository for project at SOME_DIRECTORY
... (more messages)

Now you can do this:

$ git status

And it you should see that there’s a git repository in your current directory!

Recap: This is just an example and not a useful one.

As stated previously, this example isn’t very useful in a real project. If
you’d like to see a useful example of this type of plugin checkout
virtstrap-ruby-bundler [https://github.com/ravenac95/virtstrap-ruby-bundler]

 Copyright 2012, Reuven V. Gonzales.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	v0.3.7

 	v0.3.6

 	v0.3.5

 	v0.3.4

 	v0.3.3

 	v0.3.2

 	v0.3.1

 Navigation

 	
 index

 	Virtstrap 0.3.12 documentation

Index

 Copyright 2012, Reuven V. Gonzales.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	v0.3.7

 	v0.3.6

 	v0.3.5

 	v0.3.4

 	v0.3.3

 	v0.3.2

 	v0.3.1

 _static/minus.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		Virtstrap 0.3.12 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Reuven V. Gonzales.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		v0.3.7

 		v0.3.6

 		v0.3.5

 		v0.3.4

 		v0.3.3

 		v0.3.2

 		v0.3.1

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/down.png

_static/comment.png

_static/ajax-loader.gif

_static/file.png

_static/logo.png
g virtstrap

_static/down-pressed.png

